Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer.

نویسندگان

  • Shao-Zhen Lin
  • Bo Li
  • Ganhui Lan
  • Xi-Qiao Feng
چکیده

Oscillatory morphodynamics provides necessary mechanical cues for many multicellular processes. Owing to their collective nature, these processes require robustly coordinated dynamics of individual cells, which are often separated too distantly to communicate with each other through biomaterial transportation. Although it is known that the mechanical balance generally plays a significant role in the systems' morphologies, it remains elusive whether and how the mechanical components may contribute to the systems' collective morphodynamics. Here, we study the collective oscillations in the Drosophila amnioserosa tissue to elucidate the regulatory roles of the mechanical components. We identify that the tensile stress is the key activator that switches the collective oscillations on and off. This regulatory role is shown analytically using the Hopf bifurcation theory. We find that the physical properties of the tissue boundary are directly responsible for synchronizing the oscillatory intensity and polarity of all inner cells and for orchestrating the spatial oscillation patterns inthe tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation

Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...

متن کامل

Intercellular mechanotransduction during multicellular morphodynamics.

Multicellular structures are held together by cell adhesions. Forces that act upon these adhesions play an integral role in dynamically re-shaping multicellular structures during development and disease. Here, we describe different modes by which mechanical forces are transduced in a multicellular context: (i) indirect mechanosensing through compliant substratum, (ii) cytoskeletal 'tug-of-war' ...

متن کامل

Ripple Morphodynamics in Oscillatory Flows

The long-term goal of our research is to improve our understanding of ripple morphodynamics in wave-current, boundary-layer flows. Our main focus is on the study of sediment transport in oscillatory boundary layers in the presence of unidirectional currents and the associated bed morphology (i.e. 2D and 3D ripples). We hope to improve currently available bed state prediction tools. To this end,...

متن کامل

Precisely synchronized oscillatory firing patterns require electroencephalographic activation.

Neuronal response synchronization with millisecond precision has been proposed to serve feature binding in vision and should therefore, like visual experience, depend on central states. Here we test this hypothesis by examining the occurrence and strength of response synchronization in areas 17 and 18 of anesthetized cats as a function of central states. These were assessed from the frequency c...

متن کامل

Ripple Morphodynamics in Wave-Current Boundary-Layer Flows

The long-term goal of our research is to improve our understanding of ripple morphodynamics in wave-current, boundary-layer flows. Our main focus is on the study of sediment transport in oscillatory boundary layers in the presence of unidirectional currents and the associated bed morphology (i.e. 2D and 3D ripples). To this end, both wave-induced and wave-current-induced oscillatory flow condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 31  شماره 

صفحات  -

تاریخ انتشار 2017